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Scientific Dissemination of Archaeological 
Interpretation of Airborne LiDAR-derived Data

Benjamin Štular 

CHAPTER 7

Introduction

NASA archaeologist !omas Sever is responsible for the 

first attempt at using airborne LiDAR data in archaeology 

in 1984–85 (Sheets and Sever 1988). However, at the time 

not even NASA had the computer power to make use of 

the data. As the technology matured, airborne LiDAR 

drew the wider attention of archaeologists in the 2000s 

(for example, Barnes 2003, Holden et al. 2002, Motkin 

2001, van Zijverden and Laan 2004) and by the end of 

that decade it was established as a ‘new’ tool in the archaeo-

logical remote-sensing toolbox (for an overview see Opitz 

and Cowley 2013, Štular 2011). At the end of the second 

decade of the new millennium the potential for the method 

continues to grow, limited only by the availability of af-

fordable computing and free or inexpensive datasets with 

nation- or state-wide coverage. Especially in heavily forested 

areas, there is up to a tenfold increase in the quantity of 

archaeological data for projects employing archaeological 

interpretation of airborne-LiDAR-derived high-resolution 

digital elevation models (colloquially referred to as LiDAR 

DEMs). Successful examples include entire cityscapes in 

a tropical forest (Evans 2016), more than one hundred 

thousand potential archaeological sites in a single German 

state, Baden-Württemberg (Hesse 2016), or thousands 

of prehistoric features recorded—and over one hundred 

thousand estimated—in the Slovenian landscape of Knežak 

(Laharnar et al. 2019).

However, a$er several years of preliminary reports in 

scientific journals on ‘revolutionary’ discoveries, the truly 

profound paradigm-changing impact of airborne LiDAR 

data on archaeology is still absent. For a while, it seemed 

that it was just a matter of time for the projects to be pub-

lished in full. However, a$er conversing with many of the 

leading European specialists, a common theme emerged: 

the sheer quantity of the data prevents timely publication 

in the format that would adhere to the current standards 

for scientific publication in archaeology. In the meantime, 

the resources that the teams working on airborne LiDAR 

have already invested in data-processing and mapping 

require scientific (that is, professional) recognition, thus 
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precluding the release of ‘raw data.’ !e outcome of these 

circumstances is o$en the hoarding of data in the hope 

that the funding for the final publication is just around the 

corner. Corners don’t turn, years pass. Such a predicament 

is not unique to airborne LiDAR, but is a recurring theme 

in several fields of digital archaeology. Solutions, therefore, 

must not and cannot emerge in isolation but rather in the 

context of digital archaeology as a whole, to which this 

volume is dedicated.

Airborne LiDAR in Archaeology

Airborne laser scanning (ALS), commonly referred to as 

airborne LiDAR, is a remote-sensing technique widely 

used for recording the landscape surface for different 

applications, archaeological prospection among them. 

!e process of data acquisition is well established (for 

example, Doneus et al. 2008, Kobler et al. 2007, Wehr 

and Lohr 1999). !e laser scanner—usually mounted on 

an airplane, a helicopter, or recently a UAV—emits opti-

cal laser light in pulses in different directions across the 

flight path toward the earth’s surface. !e time it takes for 

a pulse to return to the sensor is a measure of the distance 

between the laser head and the ground. !e laser measure-

ments are georeferenced with accurate differential global 

positioning systems and inertial measurement units that 

record the angle orientation of the sensor to the ground. 

!is equipment allows for measurements of surface eleva-

tions with an accuracy in the centimeter range. !e sheer 

quantity of laser pulses—up to 500,000 per second—en-

ables sensors to ‘penetrate’ vegetation canopies, allowing 

the underlying terrain elevation to be accurately modeled 

(for example, Dong and Chen 2018:19–26, Petrie and 

Toth 2008). As a rule of the thumb, it can be said that if 

a person standing in the forest looking at the sky can see 

even the tiniest bits of the sky, then airborne LiDAR will 

be able to scan the ground.

!e result of such scanning is a huge amount of 3D mea-

surements. !ese measurements are first processed into a 

3D point cloud, from which various products are produced, 

suited to many different purposes. In archaeology, the 

most important product is a representation of the surface 

topography in digital format called a digital elevation 

model (DEM). !e processing of data specific for archaeol-

ogy is a four-stage process, from raw data acquisition and 

processing, point cloud processing, and derivation of the 

products to the archaeological interpretation and dissemi-

nation and archiving (Lozić and Štular 2021; Figure 7.1.).

Ideally all four stages would be implemented with 

archaeology in mind. !e most important requirement 

in data processing for archaeology is the noise-to-detail 

ratio. In archaeology, high detail–high noise is preferred 

to lower detail–low noise. In archaeological practice, 

however, data processing (Figure 7.1., stages 1 and 2) is 

o$en blackboxed (Doneus and Briese 2011:59, Doneus 

et al. 2020:93, Lozić and Štular 2021:1, see also Latour 

1999:183–85). Custom 3D point cloud processing is 

becoming more and more common, thanks in large part 

to the so$ware LAStools. !e importance of DEM in-

terpolation is still underestimated and typically only the 

most rudimentary algorithms are employed. In contrast, 

most archaeological studies implement custom DEM 

visualization(s), which is a result of intensive method-

ological development in the past decade (see for example, 

Figure 7.2.). With this in mind, it is clear that in current 

archaeological practice of airborne LiDAR-derived data 

processing, the importance of custom data processing 

is still too o$en disregarded, and the importance of the 

operator’s decision-making is underappreciated (Doneus 

et al. 2020:93, Doneus and Briese 2011:59, Doneus and 

Kühtreiber 2013:33–34, Lozić and Štular 2021:1–2, 

Opitz and Cowley 2013:6, Štular and Lozić 2020:2).

!e results of the processing described above may be 

manipulated to create enhanced visualizations of airborne 

LiDAR-derived high-resolution DEMs (for example, raster 

grid cell size 0.5 m). !ese are interpreted by archaeologists 

with “a combination of perception and comprehension” 

(Parcak 2009). A successful archaeological interpretation 

of this data relies on a user-determined, knowledge-based 

interpretation that includes complex pattern recognition 

and the ability of the interpreter to recognize, identify, 

and classify complex landforms based on experience and 

previous archaeological knowledge (Challis et al. 2008, 

Crutchley 2009, see also Parcak 2009). The process, 

therefore, is based on a substantial body of knowledge on 

the one hand and on objective decision-making on the 

other hand. If this process, by which an interpretation is 

developed, is documented, it is by definition a process of 

scientific knowledge creation.
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!e archaeological interpretation of airborne LiDAR-

derived data, most o$en in the form of enhanced visual-

izations, has proven to be very successful in the detection 

of various archaeological features, ranging across houses, 

ramparts, trenches, ditches, fossil fields and terraces, past 

land division, abandoned quarries and mining areas, burial 

mounds, ancient roads, and other elements of archaeologi-

cal landscape and sites. It has been successfully applied for 

archaeological prospection in flat and undulating agricul-

tural regions (for example, Challis et al. 2008 with earlier 

references, Buteux and Chapman 2009, Corns and Shaw 

2009, Crutchley 2009) as well as forested slopes on hilly 

or mountainous terrain (Devereux et al. 2005, Doneus et 

al. 2008, Sittler 2004, Štular 2011) and even in tropical 

jungles (for example, Beach et al. 2019, Chase et al. 2010, 

2011, Evans 2016).

Figure 7.1. Context data-flow diagram (DFD1) of archaeology-specific airborne LiDAR data 

processing. Symbols for external entity, process, data flow, and data store are based on Gane and 

Sarson’s (1979) notations, but with additional notations for data store types: GDB—geodatabase, 

T—(textual) descriptive data store. After Lozi  and Štular 2021, Figure 1.
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In many contexts, airborne LiDAR is the most prolific 

method in archaeological prospection. !e ability of the 

airborne LiDAR to map the ground surface beneath 

most types of vegetation canopy is particularly relevant. 

No other remote-sensing method in archaeolog y is 

able to consistently produce excellent results in such 

environments. It can be said without reservation that in 

forested areas, airborne LiDAR has eclipsed past incre-

mental improvements in remote sensing in archaeology. 

Typically, in such environments, this method increases 

the number of known archaeological features between 

five- and tenfold. Such an increase in quantity and qual-

ity of data sheds entirely new light on our understand-

ing of conflict landscapes, archaeology of movement, 

settlement archaeology, and even paradigmatic changes 

to broad topics such as prehistoric settlement in the 

circum-Adriatic region. It is also forcing archaeologists 

into completely new research directions (such as infra-

structural landscape).

At the same time, it is important to caution against 

overly high expectations (see Crutchley 2009), as the 

potential for data is unevenly distributed, both across 

the discipline and across different landscape contexts. 

For example, the benefits for archaeology of cave sites or 

industrial archaeology are limited, and urban areas have 

significantly lower potential than forests.

Knowledge Production Process 

!e above description demonstrates that the process-

ing of airborne LiDAR-derived data in archaeology has 

Figure 7.2. Nadleški hrib Roman military camp (Slovenia), an extract showing the eastern ditch. Four different interpolation algorithms (from left: 

triangulated irregular network, kriging, inversed distance weighting, and nearest neighbor) of the same airborne LiDAR-derived data are shown. 

The white arrow points to the section of the ditch visible on all visualizations, the black arrow points to the section detectable only with the kriging 

interpolation. Image by B. Štular and E. Lozi .
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reached a stage of methodological maturity. However, 

a profound paradigm-changing impact is still missing. 

One of the key reasons for this is the lack of ubiquitous 

scientific dissemination of archaeological interpreta-

tions of airborne LiDAR-derived data. It is only such 

publications that will enable extensive engagement from 

the larger archaeological community and it is only such 

extensive engagement that will spur the profound impact 

on archaeology. !e reason for this may seem superficial 

at first. In most airborne LiDAR research projects, huge 

amounts of archaeological interpretations are produced, 

mostly in the form of geodatabases. However, huge 

amounts of archaeological interpretations are almost 

never published (no such example is known to the author 

at the time of writing). One possible solution would 

be sharing of the data, in the geodatabase format for 

example. But currently, this solution is not sustainable 

due to the lack of professional recognition, the additional 

labor required to prepare the data, and the lack of suitable 

repositories (see Selhofer and Geser 2015).

Anecdotally, the number one obstacle for such pub-

lication is the lack of time and resources to prepare a 

‘full publication’ in the format that adheres to current 

standards for scientific publication in archaeolog y. 

!ese standards mandate physical dating evidence and 

ground assessment, in addition to the archaeological 

interpretation of detected features. !e former is by far 

the most time-consuming part of the process, especially 

for a typical laboratory-based team of airborne LiDAR 

specialists with finite resources. As an example, we can 

look to the case of Knežak, Slovenia. Archaeological 

interpretation of the airborne LiDAR-derived data took 

about two months, and yet field assessment has been 

ongoing for three years. In that time, less than 10 percent 

of the features have been investigated on the ground, and 

even there, ground assessment provided little or no new 

information (Figure 7.3.). !e estimated cost of trial 

trenching and Carbon-14 dating of 10 percent of all 

features discovered is approximately two million euros, 

twenty times the cost of the original mapping.

To make this more tangible, we can look to a Europe-

wide simulation. 43 percent of EU countries are forested 

(Cook 2018, see also Fuchs et al. 2012; Figure 7.4.), and 

by 2020 airborne LiDAR data will be accessible for most 

of the area. If we use the most conservative estimate for 

the increase of known archaeological features in forested 

areas (five-fold), there is potential for a 215 percent 

increase in known archaeological features on the EU 

scale. Ground assessment of such an immense quantity 

of newly detected features would take generations of 

archaeologists to investigate.

!is, however, is not a superficial logistical problem 

but one that it is deeply rooted in archaeological prac-

tice. Landscape archaeology, and perhaps archaeology 

in general, is a field-based discipline, as summed up in a 

candid description by Johnson: 

In landscape archaeology, a central arena of everyday 

practice is ‘the field.’ !e encounter with primary 

data in the field remains central in the hearts and 

minds of archaeologists. ‘Direct field experience’ is 

routinely cited as a primary determinant of evidence. 

A routine device in the praise of archaeologists is to 

praise the length and arduous nature of their time 

in the field. ( Johnson 2012:518)

In other words, airborne LiDAR-derived archaeologi-

cal data obtains the status of archaeological information 

only upon assessment in the field. !at this act is collo-

quially known as ‘ground-truthing’ is telling.

!at is not to deny the pivotal position of ‘the field’ 

in the knowledge production process. Firstly, there is 

the indispensable data gathering; artifacts and dating 

samples must be obtained and interviews with locals 

must be conducted. Furthermore, there is an undeniable 

positive effect in a set of bodily practices and sensibil-

ity gained during the field work (for example, Johnson 

2012:518–21). !erefore, ‘the field’ is and will remain 

a vital part of archaeological practice. What I argue is 

that the laboratory-based archaeological interpretation 

of airborne LiDAR-derived data is a knowledge produc-

tion process in its own right, just as much as the bodily 

experience of fieldwork or interpretation of an artifact. 

Hence, its dissemination must be awarded the status of 

scientific text (for example, scientific article, scientific 

monograph). Similar trends can be observed in other 

disciplines that strive toward the acceptance of execut-

able scientific publications (Strijkers et al. 2011) and 
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Figure 7.3. Knežak (Slovenia) hillfort. Compare the information value of the photograph taken in the field (view from southeast toward the hillfort 

entrance) with that of the visualization (image fusion based on SVF and openness) of the airborne LiDAR-derived high-resolution (0.5 m) DEM.  

Image by B. Štular and E. Lozi .
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data papers (Li et al. 2019). Once this is accepted by the 

archaeological community, one major obstacle for large-

scale dissemination will be removed. As a consequence, 

the field assessment process will be distributed among the 

interested archaeological community; each feature mapped 

can be inspected at any time in the future as funds, need, 

or scientific interest arises.

Scientific Dissemination Platform 

!e above demonstrates that to use the enormous potential 

of airborne LiDAR, archaeology must evolve as a sci-

ence and devise coping mechanisms. !e key is to accept 

laboratory-based archaeological interpretation of airborne 

LiDAR-derived data, as well as other ‘digital work,’ as a sci-

entific process. To this aim, the practitioners must make big 

Figure 7.4. Forests in EU countries—green: 1900; red: reforested after 1900. Sources: Fuchs et al 2013, Fuchs et al. 2014. Image by B. Štular.
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strides to make this process as transparent and as repeatable 

as possible. !e dissemination platform proposed here is a 

backbone for this mechanism.

A clear distinction must be made between what is pro-

posed here and the undertakings for scientific recognition 

to publish high-quality research data with appropriate 

documentation and alignment to accepted standards 

(for example, Kansa and Kansa 2014, Pfeiffenberger and 

Carlson 2011). In the case of airborne LiDAR-derived 

data in archaeology, a DEM that is custom-processed for 

archaeology is suitable for data publication. !e key focus 

here is on archaeological interpretation, which is a model 

example of scientific interpretation. However, granting this 

type of archaeological interpretation a status of scientific 

interpretation in itself is not sufficient, since current scien-

tific publication platforms are not well suited to this aim. 

!is is o$en the case with digital-born data, as elaborated 

by several papers in this volume.

A brief overview of archaeological publication platforms 

where airborne LiDAR is a common topic is warranted. 

Inspecting a few of the most commonly used—Journal 

of Archaeological Science, Remote Sensing, Antiquity, 

Archaeological Prospection—reveals that a) most are still 

also published in print, but b) most are predominantly 

disseminated as digital files in pdf format; c) some offer 

attachments (such as GIS files), but d) attachments are 

rarely accessed by readers (as can be conjectured by the 

lack of citations), and e) the publication process is either 

lengthy (for example, more than one year) or rushed (like 

one week to implement reviewers’ remarks).

An overview of the contents is also revealing. Firstly, 

unless paradata and/or metadata are the subject of the 

article these are rarely published in any detail. This 

absence is sometimes taken to the absurd, when for in-

stance a visualization of airborne LiDAR-derived DEM 

is referred to simply as a “LiDAR image.” !is, however, 

is o$en at least in part the result of editorial policy and/

or peer-review process that deem these data unnecessary. 

Secondly, there are no accepted standards for graphical 

representations of the archaeological features that are 

crucial to this subject matter. For example, when the fea-

tures in question are only hinted at by arrows or similar 

icons, the reader is put at a considerable disadvantage; 

they lack the context for the process of interpretation 

and the aids used by the author(s), such as different 

visualizations, different scales of observation, or sup-

porting cartographic and/or remote-sensed data. !irdly, 

visualizations of DEM are currently the best documented 

segment of the entire process, yet different visualizations 

of the same (set of ) feature(s) is rarely present. 

Therefore, I would like to suggest that a new dis-

semination model is needed to 1) adhere to the accepted 

standards of scientific publication, and 2) overcome the 

current shortcomings. !e primary interface of the dis-

semination platform must conform to existing expecta-

tions in order to be recognized by the target scientific 

community. !is includes text and elementary figures 

published in pdf format that can be printed by those who 

want it in paper form. However, this format on its own 

is not sufficient for dissemination of this particular type 

of information. For example, the size of a printed map of 

a typical medium-sized case study of 10 by 10 kilome-

ters at an appropriate scale of 1:2000 is 5 by 5 meters, 

and a sheet with metadata for ten thousand features is 

approximately forty pages long. !e new format must 

enable a seamless fusion of reading experience with that 

of browsing maps in a digital, GIS-like environment. In 

addition, the envisaged dissemination model must be 

designed to mitigate other identified shortcomings by 

achieving the objectives outlined below.

!e first objective is to enable the process of archaeo-

logical interpretation to be as transparent and as repeat-

able as possible. !is can be resolved by a rigorous control 

over and publication of a) paradata, which describe the 

modeling process and data sources, b) standardized per-

feature metada for archaeological interpretation (such 

as visibility, visualization used, interpretation/chronol-

ogy description, interpretation/chronology confidence 

level), and c) standardized mapping conventions for 

archaeological features.

!e second objective is to enable the rapid process of 

metadata and paradata publication. One of the key rea-

sons why metadata and paradata are so rarely published 

in their entirety is that it is a tedious and lengthy process. 

However, this can be significantly alleviated by embedding 

the following services in the dissemination platform: a) a 

standardized online form for metadata and paradata entry 

(provided but not mandatory), b) metadata standards for 
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publication of complex visual media assets on the web 

powered by open-source so$ware 3DHOP (Potenziani et 

al. 2015) and Relight. !is, or similar, service could be built 

upon with custom solutions suited for airborne LiDAR, 

such as large 2D images, 3D models, and hyperlinks to data. 

!is solution should be integrated with an open source 

journal management and publishing platform, such as 

Open Journal Systems. For example, a pilot within the on-

going ARIADNEplus project will be built on the d4science 

(www.d4science.org) Virtual Research Environment.

Conclusion

“As all archaeologists now use digital tools in some, if not 

most, aspects of their work, we have the responsibility to 

critically interact with these tools and their potential im-

pact on the way we do archaeology.” !ese are the words 

with which Kevin Garstki invited participants to the 

conference from which this proceeding stems. Airborne 

LiDAR-derived data are no exception but rather a prime 

example of this. !e use of these data in archaeology has 

produced an unprecedented amount of new data in the 

last few years, but the knowledge production process is 

mostly poorly documented, o$en blackboxed, and the data 

remain unpublished. !erefore, the benefits for archaeol-

ogy as a discipline remain limited. !e obstacles were long 

perceived to be logistical in nature and the solution seemed 

to be just around the corner. However, corners didn’t turn 

and years passed. It would seem that it will take nothing less 

than a shi$ in landscape archaeology from being a predomi-

nantly ‘ground-based’ science to become an at least partially 

‘data-led’ science. !is will enable large-scale dissemination 

of archaeological information that in some environments 

will be on an unprecedented scale. In turn, this will trigger 

engagement from a larger archaeological community and 

the potential for paradigm-shi$ing archaeological discover-

ies on a regional scale will be unlocked.
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archaeological interpretation (such as template GIS files) 

that will, if properly implemented throughout the process 

of archaeological interpretation, significantly shorten the 

effort invested in per-feature metadata description, c) col-

lection of metadata for commonly used data sources (for 

example, if the same acquisition parameters have been 

used for an entire country/state, metadata must only be 

published once), and d) certain metadata parameters can 

be created automatically from the data attachments (for 

example, raster resolution).

!e third objective is to provide assistance in the review 

process. In the current practice of scientific publica-

tion, there is a pressure on rapid publication. However, 

speeding up the established process is more o$en than 

not based on pressuring the voluntary reviewers and 

authors into rushing respective tasks. !is can lead to 

diminished thoroughness of both parties. To this end, 

partial automatization of the review process for selected 

qualitative (for example, metadata and paradata entered 

via the online form) and quantitative (for example, pres-

ence/absence of per-feature metadata) parameters would 

be available as an aid to both authors and reviewers. !is 

is to say, validity checks (presence/absence of technical 

content) can be automatized so that the reviewer can 

focus on the scientific content.

!e fourth objective is to reach the target audience. As 

mentioned, the publication format must enable seamless 

fusion of the pdf-reading experience with that of brows-

ing maps in a digital GIS-like environment, enabling 

the following : a) seamless back-and-forth transition 

between basic (text reading) and advanced (GIS-like 

environment) functionality, b) basic search capabili-

ties, foremost in connection with the text of article (for 

example, particular features mentioned in the text must 

be seamlessly identifiable), c) inspection of various DEM 

visualizations in 2.5D and 3D, d) dissemination, includ-

ing (but not limited to) at least the four most commonly 

used visualizations (relief shading, sky view factor, open-

ness, color-casting; see Kokalj and Hesse 2017), and e) 

per-feature metadata.

!e technical platform to achieve these objectives could 

be based on an open-source service for ‘visual media’ files, 

such as ARIADNE visual media services (Ponchio et al. 

2016, Štular et al. 2016). !is service already provides easy 
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Every part of archaeological practice is intimately tied to digital technologies, but how 
deeply do we really understand the ways these technologies impact the theoretical trends 

in archaeology, how these trends affect the adoption of these technologies, or how the use 
of technology alters our interactions with the human past? 

This volume suggests a critical approach to archaeology in a digital world; to understand 
how digital tools are used, how they work, and how they affect practice. The chapters in this 
volume demonstrate how this critical, reflexive approach to archaeology in the digital age 
can be accomplished, touching on topics that include 3D data, predictive and procedural 
modelling, digital publishing, digital archiving, public and community engagement, ethics, 
and global sustainability. 
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